Do muscle synergies reduce the dimensionality of behavior?
نویسندگان
چکیده
The muscle synergy hypothesis is an archetype of the notion of Dimensionality Reduction (DR) occurring in the central nervous system due to modular organization. Toward validating this hypothesis, it is important to understand if muscle synergies can reduce the state-space dimensionality while maintaining task control. In this paper we present a scheme for investigating this reduction utilizing the temporal muscle synergy formulation. Our approach is based on the observation that constraining the control input to a weighted combination of temporal muscle synergies also constrains the dynamic behavior of a system in a trajectory-specific manner. We compute this constrained reformulation of system dynamics and then use the method of system balancing for quantifying the DR; we term this approach as Trajectory Specific Dimensionality Analysis (TSDA). We then investigate the consequence of minimization of the dimensionality for a given task. These methods are tested in simulations on a linear (tethered mass) and a non-linear (compliant kinematic chain) system. Dimensionality of various reaching trajectories is compared when using idealized temporal synergies. We show that as a consequence of this Minimum Dimensional Control (MDC) model, smooth straight-line Cartesian trajectories with bell-shaped velocity profiles emerged as the optima for the reaching task. We also investigated the effect on dimensionality due to adding via-points to a trajectory. The results indicate that a trajectory and synergy basis specific DR of behavior results from muscle synergy control. The implications of these results for the synergy hypothesis, optimal motor control, motor development, and robotics are discussed.
منابع مشابه
Representation of Muscle Synergies in the Primate Brain.
UNLABELLED Evidence suggests that the CNS uses motor primitives to simplify movement control, but whether it actually stores primitives instead of computing solutions on the fly to satisfy task demands is a controversial and still-unanswered possibility. Also in contention is whether these primitives take the form of time-invariant muscle coactivations ("spatial" synergies) or time-varying musc...
متن کاملInvestigation of Muscle Synergies Using Four Different Methods of Synergy Extraction While Running on a Treadmill in Beginner Runners
Introduction: The study of muscle synergy is a new way to evaluate the functioning of the human body's control system. Different mathematical methods are used to extract muscle synergies from electromyographic data, and this factor can cause different outputs in muscle synergies. Therefore, the aim of this study was to investigate muscle synergies using four different synergy extraction methods...
متن کاملExploring modular strategies for coordinating muscles during multidirectional human locomotion
Introduction: It has been hypothesized that the nervous system simplifies muscle coordination through modularity, using neural patterns to activate muscles in groups called synergies (Tresch et al., 1999; d’ Avella et al., 2003; Ting and Macpherson, 2005; Ivanenko et al., 2006). Here we investigated how simple modular controllers based on invariant motor primitives (synergies or patterns) might...
متن کاملFrom task parameters to motor synergies: A hierarchical framework for approximately optimal control of redundant manipulators
We present a hierarchical framework for approximately-optimal control of redundant manipulators. The plant is augmented with a low-level feedback controller, designed to yield input-output behavior that captures the task-relevant aspects of plant dynamics but has reduced dimensionality. This makes it possible to reformulate the optimal control problem in terms of the augmented dynamics, and opt...
متن کاملChallenges and New Approaches to Proving the Existence of Muscle Synergies of Neural Origin
Muscle coordination studies repeatedly show low-dimensionality of muscle activations for a wide variety of motor tasks. The basis vectors of this low-dimensional subspace, termed muscle synergies, are hypothesized to reflect neurally-established functional muscle groupings that simplify body control. However, the muscle synergy hypothesis has been notoriously difficult to prove or falsify. We u...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2014